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Abstract
We study the generating function of rooted and unrooted hyperforests in a
general complete hypergraph with n vertices by using a novel Grassmann
representation of their generating functions. We show that this new approach
encodes the known results about the exponential generating functions for
the different number of vertices. We also consider some applications, such
as counting hyperforests in the k-uniform complete hypergraph and the one
complete in hyperedges of all dimensions. Some general features of the
asymptotic regimes for a large number of connected components are discussed.

PACS numbers: 05.50.+q, 02.10.Ox, 11.10.Hi, 11.10.Kk

1. Introduction

In this paper we shall be concerned mainly with the problem of evaluating the weight of rooted
and unrooted hyperforests in the complete hypergraph with n vertices Kn when the weight of
a hyperedge depends only on its cardinality. These questions are usually analysed by using
the exponential generating function and the Lagrange inversion formula [1, 2], even though it
seems that they have been posed and solved in the context of statistical mechanics [3]. But, at
least in the case of ordinary graphs, the entropy of trees and rooted forests of a generic graph
can be evaluated by using Kirchhoff’s matrix-tree theorem. For the case of unrooted forests a
solution can be obtained by the use of a novel generalization of Kirchhoff’s theorem [4], where
the generating function of spanning forests in a graph, which arises as the q → 0 limit of the
partition function of the q-state Potts model [5–8], can be represented as a Grassmann integral
involving a quadratic (Gaussian) term together with a special nearest-neighbour four-fermion
interaction. Furthermore, this fermionic model possesses an osp(1|2) supersymmetry. By
applying this method the classical result [9, 10] that the number of unrooted forests on the
complete graph with n vertices for large n behaves asymptotically as nn−2√e can be recovered
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[11]. Our fermionic model also allows us to obtain more detailed information. For example in
[12] the renormalization flow for unrooted forests on the triangular lattice has been analysed.

A further generalization has been achieved in [13], where, given a hypergraph G = (V ,E)

(that is, E is an arbitrary collection of subsets of V , each of cardinality �2), by exploiting the
underlying osp(1|2) supersymmetry, a class of Grassmann integrals permits an expansion in
terms of spanning hyperforests. More precisely, let us introduce, at each vertex i ∈ V , a pair
of Grassmann variables ψi, ψ̄ i , which obey the usual rules for Grassmann integration [14, 15].
For each subset A ⊆ V we define the monomial τA =∏i∈A ψ̄iψi , and for each number λ (in
R or C), we define the Grassmann element

f
(λ)
A = λ(1 − |A|)τA +

∑
i∈A

τA�i −
∑
i,j∈A
i �=j

ψ̄ iψj τA�{i,j} (1.1)

and introduce a notation for the integral on all the Grassmann fields on the vertices∫
DV (ψ, ψ̄) :=

∏
i∈V

∫
dψ̄ i dψi (1.2)

∫
DV,t(ψ, ψ̄) :=

∏
i∈V

∫
dψ̄ i dψi exp[ti ψ̄ iψi]. (1.3)

Given arbitrary hyperedge weights {wA}A∈E , the general Grassmann integral (‘partition
function’)

Z =
∫

DV,t(ψ, ψ̄) exp

[∑
A∈E

wAf
(λ)
A

]
(1.4)

has a combinatorial interpretation in terms of spanning hyperforests.
Special cases provide the generating functions for rooted and unrooted spanning

(hyper)forests and spanning (hyper)trees. The generating function of unrooted spanning
hyperforests, with a weight wA for each hyperedge A and a weight λ for each connected
component is given by

∫
DV (ψ, ψ̄) exp

[
λ
∑
i∈V

ψ̄iψi +
∑
A∈E

wAf
(λ)
A

]
=

∑
F∈F(G)

(∏
A∈F

wA

)
λk(F) (1.5)

= λ|V | ∑
F∈F(G)

(∏
A∈F

wA

λ|A|−1

)
, (1.6)

where the sum runs over spanning hyperforests F in G, and k(F ) is the number of connected
components of F (note that the second equality in (1.6) uses proposition 2.1). If we set wA = 1
for all the hyperedges A ∈ E, we get as a coefficient of λp in the polynomial on the right-hand
side of the previous equation the number of unrooted hyperforests of the hypergraph G with p
components.

If, on the other hand, we specialize (1.4) to λ = 0, we obtain:∫
DV,t(ψ, ψ̄) exp

[∑
A∈E

wAf
(0)
A

]
=

∑
F∈F(G)

F=(F1,...,Fl )

(∏
A∈F

wA

)
l∏

α=1

( ∑
i∈V (Fα)

ti

)
, (1.7)

where the sum runs over spanning hyperforests F in G with components F1, . . . , Fl , and
V (Fα) is the vertex set of the hypertree Fα . This is the generating function of rooted spanning
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hyperforests, with a weight wA for each hyperedge A and a weight ti for each root i. By
taking the derivatives with respect to ti1 , . . . , tir at t = 0 we easily get the generating function
of spanning hyperforests rooted at the vertices i1, . . . , ir , which is∫

DV (ψ, ψ̄)(ψ̄ψ)i1 · · · (ψ̄ψ)ir exp

[∑
A∈E

wAf
(0)
A

]
(1.8)

where we used the shortened notation (ψ̄ψ)i := ψ̄ iψi . If we now set wA = 1 for all the
hyperedges A ∈ E, we get the number of hyperforests of the hypergraph G with connected
components r hypertrees rooted at the vertices i1, . . . , ir . Note that in the case of an ordinary
graph f

(0)
A = f

(0)
{i,j} = (ψ̄ i − ψ̄j )(ψi −ψj) is a quadratic form in the Grassmann fields, and the

previous integral reduces to the evaluation of a reduced determinant of the Laplacian matrix,
in agreement with the matrix-tree theorem.

In what follows we shall obtain explicit formulae for the case of the hypergraph Kn which
is complete in hyperedges of all possible cardinality, with weight ws on the hyperedges of
cardinality s for s = 2, . . . , n, that is with wA = w|A|. These results could in principle
and in many cases have been already derived by using the standard methods of enumerative
combinatorics, that is the Lagrange inversion formula in connection with the formalism of the
exponential generating functions. We hope to convince the reader that also in these cases our
Grassmann formalism provides an alternative, simple and compact way to recover the total
weights for rooted and unrooted hyperforests on n labelled vertices, which is to say spanning
on the complete hypergraph Kn.

This paper is organized as follows. In section 2 we recall relevant notions from graph
theory. In section 3 we illustrate how, at least in the case of a complete graph, the representation
for the generating function of unrooted hyperforests (1.6) can be deduced from that for the
rooted hypertrees (1.7). In section 4 we collect all the explicit Grassmann integrals that
will be used in the following. In section 5, we show the relation between our Grassmann
integrals and the explicit solutions achieved by standard methods. In section 6 we deal with
rooted hyperforests, while section 7 is devoted to unrooted hyperforests. By restricting our
general model to the case in which only one weight is nonzero, that is wp = δp,k , we obtain
the explicit evaluation of the number of rooted and unrooted spanning hyperforests on the
k-uniform complete hypergraphs K(k)

n with n-vertices. These results are presented respectively
in sections 6.1 and 7.1. Here we also derive a novel general simple expression for the number
of unrooted hyperforests with p hypertrees in terms of associated Laguerre polynomials and
its asymptotic expansion for a large number of vertices. We also consider another special case,
the one in which all the weights are equal, that is wp = 1 for all p, in section 6.2. We give in
section 7.2 the evaluation of the number of hyperforests rooted on p vertices for the hypergraph
Kn. Some conclusions are presented in section 8. Appendix A collects some basic features of
Stirling numbers of the second kind, Bell numbers and Bell polynomials. In appendix B we
report, for reader convenience, the derivation of the number of (hyper-)trees in a unified way
by the standard exponential generating function formalism and Lagrange inversion formula.
In appendix C we provide some results on the asymptotic behaviour of the associated Laguerre
polynomials which are used in the main text.

2. Graphs and hypergraphs

A (simple undirected finite) graph is a pair G = (V ,E), where V is a finite set and E is a
collection (possibly empty) of 2-element subsets of V . The elements of V are the vertices of
the graph G, and the elements of E are the edges. Usually, in a picture of a graph, vertices are
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drawn as dots and edges as lines (or arcs). Please note that, in the present definition, loops
( ) and multiple edges ( ) are not allowed. We write |V | (resp. |E|) for the cardinality
of the vertex (resp. edge) set; more generally, we write |S| for the cardinality of any finite
set S.

A graph G′ = (V ′, E′) is said to be a subgraph of G (written G′ ⊆ G) in case V ′ ⊆ V

and E′ ⊆ E. If V ′ = V , the subgraph is said to be spanning. We can, by a slight abuse of
language, identify a spanning subgraph (V ,E′) with its edge set E′.

A walk (of length k � 0) connecting v0 with vk in G is a sequence

(v0, e1, v1, e2, v2, . . . , ek, vk)

such that all vi ∈ V , all ei ∈ E and vi−1, vi ∈ ei for 1 � i � k. A cycle in G is a walk in
which

(a) v0, . . . , vk−1 are distinct vertices of G, and vk = v0

(b) e1, . . . , ek are distinct edges of G; and
(c) k � 2.1

The graph G is said to be connected if every pair of vertices in G can be connected by a
walk. The connected components of G are the maximal connected subgraphs of G. It is not
hard to see that the property of being connected by a walk is an equivalence relation on V ,
and that the equivalence classes for this relation are nothing other than the vertex sets of the
connected components of G. Furthermore, the connected components of G are the induced
subgraphs of G on these vertex sets2. We denote by c(G) the number of connected components
of G. Thus, c(G) = 1 if and only if G is connected.

A forest is a graph that contains no cycles. A tree is a connected forest. (Thus, the
connected components of a forest are trees.) It is easy to prove, by induction on the number
of edges, that

|E| − |V | + c(G) � 0 (2.1)

for all graphs, with equality if and only if G is a forest.
In a graph G, a spanning forest (resp. spanning tree) is simply a spanning subgraph that

is a forest (resp. a tree). We denote by F(G) [resp. T (G)] the set of spanning forests (resp.
spanning trees) in G. As mentioned earlier, we will frequently identify a spanning forest or
tree with its edge set.

A rooted tree is a tree with a distinguished vertex called the root. A rooted forest is a
graph whose connected components are rooted trees.

Hypergraphs are the generalization of graphs in which edges are allowed to contain more
than two vertices. Unfortunately, the terminology for hypergraphs varies substantially from
author to author, so it is important to be precise about our own usage. For us, a hypergraph is
a pair G = (V ,E), where V is a finite set and E is a collection (possibly empty) of subsets
of V , each of cardinality �2. The elements of V are the vertices of the hypergraph G, and
the elements of E are the hyperedges (the prefix ‘hyper’ can be omitted for brevity). Note that
we forbid hyperedges of 0 or 1 vertices (some other authors allow these)3. We shall say that

1 Actually, in a graph as we have defined it, all cycles have length � 3 (because e1 �= e2 and multiple edges are not
allowed). We have presented the definition in this way with an eye to the corresponding definition for hypergraphs
(see below), in which cycles of length 2 are possible.
2 If V ′ ⊆ V , the induced subgraph of G on V ′, denoted by G[V ′], is defined to be the graph (V ′, E′) where E′ is
the set of all the edges e ∈ E that satisfy e ⊆ V ′ (i.e., whose endpoints are in V ′).
3 Our definition of hypergraph is the same as that of McCammond and Meier [16]. It is also the same as that of
Gessel and Kalikow [17], except that they allow multiple edges and we do not: for them, E is a multiset of subsets of
V (allowing repetitions), while for us E is a set of subsets of V (forbidding repetitions).
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A ∈ E is a k-hyperedge if A is a k-element subset of V . A hypergraph is called k-uniform if
all its hyperedges are k-hyperedges. Thus, a 2-uniform hypergraph is nothing other than an
ordinary graph.

The definitions of subgraphs, walks, cycles, connected components, trees and forests given
above for graphs were explicitly chosen in order to immediately generalize to hypergraphs:
it suffices to copy the definitions verbatim, inserting the prefix ‘hyper’ as necessary. The
analogue of the inequality (2.1) is the following:

Proposition 2.1. Let G = (V ,E) be a hypergraph. Then∑
A∈E

(|A| − 1) − |V | + c(G) � 0, (2.2)

with equality if and only if G is a hyperforest.

Proofs can be found, for instance, in [18, p 392, proposition 4] or [17, pp 278–9, lemma].
Please note one important difference between graphs and hypergraphs: every connected

graph has a spanning tree, but not every connected hypergraph has a spanning hypertree.
Indeed, it follows from proposition 2.1 that if G is a k-uniform hypergraph with n vertices,
then G can have a spanning hypertree only if k − 1 divides n − 1. Of course, this is merely a
necessary condition, not a sufficient one!

The hypergraph K(k)
n has |V | = n vertices and is complete in the k-hyperedges, in the

sense that it is k-uniform and for all choices of k different vertices i1, . . . , ik in V the hyperedge
{i1, . . . , ik} belongs to the set of its hyperedges.

The hypergraph4 Kn has |V | = n vertices and is complete in the k-hyperedges for all
2 � k � n, so that E(Kn) =⋃n

k=2 E
(
K(k)

n

)
.

3. Exponential generating function for hypertrees and hyperforests

Let us consider the complete hypergraph Kn for every n, with general hyperedge-weights wA

which vary only with the cardinality of the hyperedge A, i.e. wA = w|A|. The k-uniform
complete hypergraph K(k)

n corresponds to the case in which the only non-vanishing weight
is wk .

Let tn be the total weight of rooted hypertrees in the case of n vertices |V | = n, w =
{wk}k�2 and let

T (z) = T (z, w) :=
∑
n�0

tn(w)
zn

n!
(3.1)

the exponential generating function for the sequence {tn}.
The exponential generating function for rooted hyperforests is therefore etT (z), where t

counts the number of connected components.
In the case of complete hypergraphs we can also consider the exponential generating

function for unrooted trees

U(z) = U(z, w) :=
∑
n�0

un(w)
zn

n!
(3.2)

where un is the weight of unrooted trees in the case of n vertices |V | = n. Of course as the
root of a tree on n vertices can be chosen in n ways

tn = nun (3.3)

4 We do not use the symbol Kn because this is usually used for the complete graph K(2)
n with n vertices.
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and therefore

T (z) = z
d

dz
U(z) (3.4)

and conversely

U(z) =
∫ z

0

dω

ω
T (ω). (3.5)

By using a recursion relation, as is done in appendix B, we see that the exponential generating
function for rooted hypertrees satisfies the relation

T (z) = z exp

⎡
⎣∑

k�2

wk

T (z)k−1

(k − 1)!

⎤
⎦ (3.6)

therefore

z = T exp

⎡
⎣−

∑
k�2

wk

T k−1

(k − 1)!

⎤
⎦ (3.7)

and by changing variables from ω to T (ω) in the integral in (3.5) we easily get

U(z) = T (z) +
∑
k�2

wk(1 − k)
T (z)k

k!
(3.8)

that is the exponential generating function for unrooted hypertrees can be expressed in terms
of the exponential generating function of rooted hypertrees [3]. Furthermore, the exponential
generating function for unrooted hyperforests, with parameter λ to count the number of
connected components, is simply eλU(z) and this can also be expressed in terms of the
exponential generating function of rooted hypertrees by means of (3.8).

Let us use these relations in order to re-obtain, at least in the case considered here of
the complete hypergraph, the generating function of unrooted hyperforests in the Grassmann
representation from the generating function of rooted hyperforests.

Formula (1.7) for the generating function of unrooted hyperforests for Kn, at ti = t for
every vertex, means that

n![zn] etT (z) =
∫

Dn(ψ, ψ̄) exp

[
t (ψ̄, ψ) +

∑
A∈E

w|A|f
(0)
A

]
(3.9)

where we shortly denoted

Dn(ψ, ψ̄) := DV (Kn)
(ψ, ψ̄) =

n∏
i=1

dψ̄ i dψi (3.10)

and

(ψ̄, ψ) :=
∑

i∈V (Kn)

(ψ̄ψ)i =
n∑

i=1

ψ̄ iψi. (3.11)

And, if f (z) can be expanded in powers of z, [zn]f (z) is the coefficient of z in the expansion.
It follows that for every power r, the coefficient of t r is equal to

n![zn]T (z)r =
∫

Dn(ψ, ψ̄)(ψ̄, ψ)r exp

[∑
A∈E

w|A|f
(0)
A

]
(3.12)

6



J. Phys. A: Math. Theor. 41 (2008) 205003 A Bedini et al

and therefore for each function L defined by a formal power series

n![zn]L[T (z)] =
∫

Dn(ψ, ψ̄)L[(ψ̄, ψ)] exp

[∑
A∈E

w|A|f
(0)
A

]
. (3.13)

Now, the exponential generating function for unrooted hyperforests is eλU(z), where λ

counts the hypertrees in the hyperforests and we know by (1.6) that

n![zn] eλU(z) =
∫

Dn(ψ, ψ̄) exp

{
λ(ψ̄, ψ) +

∑
A∈E

w|A|f
(λ)
A

}
(3.14)

but ∑
A∈E

w|A|f
(λ)
A =

∑
A∈E

w|A|
[
λ (1 − |A|) τA + f

(0)
A

]
(3.15)

and∑
A∈E

w|A| (1 − |A|) τA =
∑
k�2

wk (1 − k)
∑

A:|A|=k

τA =
∑
k�2

wk(1 − k)
(ψ̄, ψ)k

k!
(3.16)

so that

n![zn] eλU(z) =
∫

Dn(ψ, ψ̄) exp

⎧⎨
⎩λ

⎡
⎣(ψ̄, ψ) +

∑
k�2

wk(1 − k)
(ψ̄, ψ)k

k!

⎤
⎦ +

∑
A∈E

w|A|f
(0)
A

⎫⎬
⎭ .

(3.17)

But this is exactly formula (3.13) when

L(y) = eλK(y) (3.18)

with

K(y) := y +
∑
k�2

wk(1 − k)
yk

k!
(3.19)

which is such that U(z) = K[T (z)] by (3.8).

4. Useful lemmas on Grassmann integrals

In the following we shall make use of very simple results for Grassmann integrals.

Lemma 4.1. Let |V | = n be the number of vertices, then∫
Dn(ψ, ψ̄)

(ψ̄, ψ)s

s!
= δs,n.

Proof. It trivially follows from induction in n. �

We soon derive, by expansion in powers, that

Corollary 4.2. Let g be a generic function of the scalar product, that is a polynomial as the
scalar product is nilpotent of degree n, then∫

Dn(ψ, ψ̄)g((ψ̄, ψ)) = n![zn]g(z) = n!

2π i

∮
dz

zn+1
g(z)

where the contour integral is performed in the complex plain constrained to encircle the origin.

7
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These are the ingredients to observe that

Lemma 4.3. Let |V | = n be the number of vertices, g a generic function, when i1, . . . , ir is a
set of distinct vertices, then∫

Dn(ψ, ψ̄)(ψ̄ψ)i1 · · · (ψ̄ψ)ir g((ψ̄, ψ)) = (n − r)!

n!

∫
Dn(ψ, ψ̄)(ψ̄, ψ)rg((ψ̄, ψ))

= (n − r)![zn−r ]g(z).

Proof. By integrating over ψ̄ i1
, ψi1 , . . . , ψ̄ ir

, ψir on the left-hand side we get an integral of the
form used in the previous lemma, where both the integration measure and the scalar product
were restricted on the remaining n − r vertices, so that∫

Dn−r (ψ, ψ̄)g((ψ̄, ψ)) = (n − r)![zn−r ]g(z).

By expanding instead on the right-hand side we get∑
s�0

(n − r)!

n!

∫
Dn(ψ, ψ̄)(ψ̄, ψ)r+s[zs]g(z) = (n − r)![zn−r ]g(z)

and we get our result by using lemma 4.1. �

Let J be the matrix with unit entries for each i, j ∈ V

Jij = 1. (4.1)

Our common tool is the following

Lemma 4.4. Let |V | = n be the number of vertices, g and h generic functions, then∫
Dn(ψ, ψ̄)(ψ̄, ψ)r eh((ψ̄,ψ))+(ψ̄,Jψ)g((ψ̄,ψ))

=
∫

Dn(ψ, ψ̄)(ψ̄, ψ)r eh((ψ̄,ψ))[1 + (ψ̄, ψ)g((ψ̄, ψ))].

Proof. Let us expand the second part of the exponential∫
Dn(ψ, ψ̄)(ψ̄, ψ)r eh((ψ̄,ψ))

∑
s

(ψ̄, Jψ)s

s!
g((ψ̄, ψ))s

=
∫

Dn(ψ, ψ̄)(ψ̄, ψ)r eh((ψ̄,ψ))[1 + (ψ̄, Jψ)g((ψ̄, ψ))]

=
∫

Dn(ψ, ψ̄)(ψ̄, ψ)r eh((ψ̄,ψ))[1 + (ψ̄, ψ)g((ψ̄, ψ))]

because all higher powers of (ψ̄, Jψ) vanish. We get the final line because in the rest of the
integral for each i the field ψ̄ i is always multiplied by the companion ψi and thus the only
contribution in (ψ̄, Jψ) comes from the diagonal part, that is (ψ̄, ψ). �

5. Relation with previous approaches

In virtue of our lemmas, the Grassmann integrals for the generating functions of rooted and
unrooted hyperforests at a fixed number of vertices can be expressed as a unique contour
integral of a complex variable. In this section we will show the change of variables which
explicitly maps those integrals into the coefficient of the corresponding exponential generating
function in the number of vertices, without using the Lagrange inversion formula.

8
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The sum on all the edges appears in both main formulae (3.9) and (3.17), and in our model
it becomes∑
A∈E

w|A|f
(0)
A =

∑
k�2

wk

∑
A:|A|=k

f
(0)
A

=
∑
k�2

wk

[
(n − k + 1)

(ψ̄, ψ)k−1

(k − 1)!
− (ψ̄, (J − I )ψ)

(ψ̄, ψ)k−2

(k − 2)!

]

=
∑
k�2

wk

[
n
(ψ̄, ψ)k−1

(k − 1)!
− (ψ̄, Jψ)

(ψ̄, ψ)k−2

(k − 2)!

]
(5.1)

and according to lemma 4.4, for any function h of the scalar product (ψ, ψ̄)∫
Dn(ψ, ψ̄)h((ψ̄, ψ)) exp

[∑
A∈E

w|A|f
(0)
A

]
=
∫

Dn(ψ, ψ̄)h((ψ̄, ψ))

× exp

[
n
∑
k�2

wk

(ψ̄, ψ)k−1

(k − 1)!

][
1 −

∑
k�2

wk

(ψ̄, ψ)k−1

(k − 2)!

]
(5.2)

so the Grassmann integrals reduce to what has been formally obtained in corollary 4.2 and we
have for (3.9)

n![zn] etT (z) =
∫

Dn(ψ, ψ̄)

⎡
⎣1 −

∑
k�2

wk

(ψ̄, ψ)k−1

(k − 2)!

⎤
⎦

× exp

⎡
⎣t (ψ̄, ψ) + n

∑
k�2

wk

(ψ̄, ψ)k−1

(k − 1)!

⎤
⎦

= n!

2π i

∮
dξ

ξn+1

⎡
⎣1 −

∑
k�2

wk

ξk−1

(k − 2)!

⎤
⎦ exp

⎡
⎣tξ + n

∑
k�2

wk

ξk−1

(k − 1)!

⎤
⎦ (5.3)

which is nothing but

[zn] etT (z) = 1

2π i

∮
dz

zn+1
etT (z) (5.4)

with the change of variables (3.6) with T (z) = ξ , as

dz

z
= dξ

ξ

⎡
⎣1 −

∑
k�2

wk

ξk−1

(k − 2)!

⎤
⎦ . (5.5)

Analogously for (3.17)

n![zn] eλU(z) =
∫

Dn(ψ, ψ̄)

⎡
⎣1 −

∑
k�2

wk

(ψ̄, ψ)k−1

(k − 2)!

⎤
⎦

× exp

⎡
⎣λ

⎛
⎝(ψ̄, ψ) +

∑
k�2

wk(1 − k)
(ψ̄, ψ)k

k!

⎞
⎠ + n

∑
k�2

wk

(ψ̄, ψ)k−1

(k − 1)!

⎤
⎦

9
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= n!

2π i

∮
dξ

ξn+1

⎡
⎣1 −

∑
k�2

wk

ξk−1

(k − 2)!

⎤
⎦

× exp

⎡
⎣λ

⎛
⎝ξ +

∑
k�2

wk(1 − k)
ξk

k!

⎞
⎠ + n

∑
k�2

wk

ξk−1

(k − 1)!

⎤
⎦ (5.6)

which, by using the same change of variables, is nothing but

[zn] eλU(z) = 1

2π i

∮
dz

zn+1
eλU(z) (5.7)

= 1

2π i

∮
dz

zn+1
exp

⎧⎨
⎩λ

⎡
⎣T (z) +

∑
k�2

wk(1 − k)
T (z)k

k!

⎤
⎦
⎫⎬
⎭ . (5.8)

6. Rooted hyperforests

Let us begin with the evaluation of (1.8), that is the case λ = 0 which evaluates the weight
of rooted hyperforests on r vertices i1, . . . , ir , which on the complete hypergraph Kn does not
depend on the particular choice of the vertices, and we denote this weight by vn,r . We have

vn,r = vn,r (w) =
∫

Dn(ψ, ψ̄)(ψ̄ψ)i1 · · · (ψ̄ψ)ir

× exp

⎡
⎣n
∑
k�2

wk

(ψ̄, ψ)k−1

(k − 1)!
−
∑
k�2

wk(ψ̄, Jψ)
(ψ̄, ψ)k−2

(k − 2)!

⎤
⎦

= (n − r)!

n!

∫
Dn(ψ, ψ̄)(ψ̄, ψ)r

⎡
⎣1 −

∑
k�2

wk

(ψ̄, ψ)k−1

(k − 2)!

⎤
⎦

× exp

⎡
⎣n
∑
k�2

wk

(ψ̄, ψ)k−1

(k − 1)!

⎤
⎦ .

Of course there are
(
n

r

)
different choices for r different vertices, therefore, if we denote by

En(t; w) = n![zn] etT (z) (6.1)

the generating function of rooted hyperforests on n vertices, its Grassmann representation is

En(t; w) =
∫

Dn(ψ, ψ̄)

⎡
⎣1 −

∑
k�2

wk

(ψ̄, ψ)k−1

(k − 2)!

⎤
⎦ et (ψ̄,ψ)+n

∑
k�2 wk

(ψ̄,ψ)k−1

(k−1)! . (6.2)

The expansion in power series of t

En(t; w) =
∑
r�0

tn,r (w)t r (6.3)

provides the total weight of rooted hyperforests with r connected components

tn,r = tn,r (w) = n![zn][t r ] etT (z) = [t r ]En(t; w) (6.4)

10
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then

tn,r =
(

n

r

)
vn,r =

∫
Dn(ψ, ψ̄)

(ψ̄, ψ)r

r!

⎡
⎣1 −

∑
k�2

wk

(ψ̄, ψ)k−1

(k − 2)!

⎤
⎦ en

∑
k�2 wk

(ψ̄,ψ)k−1

(k−1)! (6.5)

while then the total weight of rooted hyperforests

En(w) := En(1; w) =
∑
r�0

tn,r (w) (6.6)

is given by the generating function at t = 1.
Let us now introduce the function

θ(x, y; w) := exp

⎡
⎣x
∑
k�2

wk

yk−1

(k − 1)!

⎤
⎦ :=

∑
s�0

Ps(x; w)
ys

s!
(6.7)

which is the exponential generating function for the exponentials Ps(x; w) in the variable x,
which varies with the choice of the weights w. We recognize that∑
k�2

wk

yk−1

(k − 2)!
θ(x, y; w) = y

x

∂

∂y
θ(x, y; w) = 1

x

∑
s�1

Ps(x; w)
ys

(s − 1)!
. (6.8)

Therefore the integral in (6.2) can be re-expressed by using

etyθ(x, y; w) =
∑
s�0

∑
r�0

Ps(x; w)t r
yr+s

r!s!
(6.9)

and ∑
k�2

wk

yk−1

(k − 2)!
etyθ(x, y; w) =

∑
s�0

∑
r�0

Ps(x; w)t r
yr+s

r!s!

s

x
. (6.10)

The same expression could be written also with the help of the derivative with respect to the
variable t, let D = ∂

∂t
, then

∑
k�2

wk

yk−1

(k − 2)!
etyθ(x, y; w) (6.11)

=
∑
k�2

wk

(k − 2)!
Dk−1 etyθ(x, y; w) (6.12)

=
∑
k�2

wk

(k − 2)!
Dk−1

∑
s�0

∑
r�0

Ps(x; w)t r
yr+s

r!s!
(6.13)

=
∑
s�0

Ps(x; w)
∑

r�k−1

yr+s

s!

∑
k�2

wk

(k − 2)!

1

[r − (k − 1)]!
t r−(k−1) (6.14)

=
∑
k�2

∑
s�k−1

Ps−(k−1)(x; w)
∑
r�0

t r
yr+s

r! [s − (k − 1)]!

wk

(k − 2)!
(6.15)

so that by comparing term by term in (6.10) and (6.15) we recover a recursion relation for the
polynomials Ps(x, w)

Ps(x; w) = x
∑
k�2

wk

(
s − 1

k − 2

)
Ps−(k−1)(x; w). (6.16)

11
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In terms of the polynomials Ps(x, w) we soon get for the generating function of rooted
hyperforests

En(t; w) =
∑
s�0

∑
r�0

Ps(n; w)t r
∫

Dn(ψ, ψ̄)
(ψ̄, ψ)r+s

r!s!

[
1 − s

n

]
(6.17)

=
∑
r�1

(
n − 1

r − 1

)
Pn−r (n; w)t r . (6.18)

Therefore the total weight of rooted hyperforests is

En(w) =
∑
r�1

(
n − 1

r − 1

)
Pn−r (n; w) (6.19)

and the total weight of rooted hyperforests with r hypertrees is

tn,r =
(

n − 1

r − 1

)
Pn−r (n; w) (6.20)

from which in particular we obtain for r = 0

tn,0 = 0 (6.21)

for all choices of the weights w, a generalization of what occurs for the case of ordinary trees
because the determinant of the weighted Laplacian on the graph is always vanishing.

Also, as P0(x; w) = 1 for all choices of the weights w, of course

tn,n = 1 (6.22)

as there is only one possible hyperforest with n hypertrees, the trivial one in which each
hypertree is a vertex.

The weight of rooted hypertrees tn is given by the case r = 1

tn := tn,1 = Pn−1(n; w). (6.23)

A more explicit expression for the polynomials Ps(x; w) is obtained by expanding the
exponential in the definition (6.7)

Ps(x; w) = s![ys]θ(x, y; w)

= s!
∏
j�2

∑
lj

1

lj !

(
xwj

(j − 1)!

)lj

ylj (j−1)

= s!
∑
{lj }

δs,
∑

j�2 lj (j−1)

⎡
⎣∏

j�2

1

lj !

(
xwj

(j − 1)!

)lj

⎤
⎦

so that if we define the coefficients ps,l(w) by

Ps(x; w) =
∑
l�0

ps,l(w)xl (6.24)

we get

ps,l = ps,l(w) = s![ys][xl]θ(x, y; w)

= s!
∑
{lj }

δl,
∑

j�2 lj δs,
∑

j�2 lj (j−1)

⎡
⎣∏

j�2

1

lj !

(
wj

(j − 1)!

)lj

⎤
⎦ .

12
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In order to understand the constraint which is imposed in the sum on the coefficients lj ’s,
remember that from proposition 2.1, if lj is the number of hyperedges of cardinality j, n is
the number of vertices and r is the number of connected components, which in our case is the
number of hypertrees

0 =
∑
A∈E

(|A| − 1) − |V | + c(G) =
∑
j�2

lj (j − 1) − n + r (6.25)

and this is exactly the constraint which is imposed. The number l is instead nE the total
number of hyperedges.

6.1. On the k-uniform complete hypergraph

In the k-uniform complete hypergraph K(k)
n the hyperedges are all the subsets A ⊂ V of k

vertices: |A| = k. This is therefore the particular case of our model in which if we introduce
the vectors ek such that their components are

(ek)s = δks (6.26)

we have weights

w = wek (6.27)

and as we wish to count configurations we have to set w = 1 so that in the general formulae
wk = 1 and all the other weights for the hyperedges have to be set to zero. We have

θ(x, y; ek) = exp

[
x

yk−1

(k − 1)!

]
(6.28)

and therefore

Ps(x; ek) =

⎧⎪⎨
⎪⎩

s!(
s

k−1

)
![(k − 1)!]

s
k−1

x
s

k−1 if s = l(k − 1) for integer l

0 otherwise

(6.29)

which satisfy the recursion relation (6.16) which for w = ek takes the form

Ps(x; ek) = x

(
s − 1

k − 2

)
Ps−(k−1)(x; ek). (6.30)

We easily get that

ps,l(ek) =
⎧⎨
⎩

s!

l![(k − 1)!]l
if s = l(k − 1) for integer l

0 otherwise.
(6.31)

On K(k)
n , the numbers nE = l of hyperedges and the number of connected components

c(G) = r are related by (6.25)

l(k − 1) − n + r = 0 (6.32)

that is

nE = l = n − r

k − 1
(6.33)

is the number of hyperedges (of degree k).
For the number of rooted hyperforests with r hypertrees on the k-uniform complete

hypergraph K(k)
n , we have when n − r can be divided by k − 1

13
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tn,r (ek) =
(

n − 1

r − 1

)
Pn−r (n; ek) (6.34)

=
(

n − 1

r − 1

)
(n − r)!(

n−r
k−1

)
![(k − 1)!]

n−r
k−1

n
n−r
k−1 (6.35)

=
(

(k − 1)nE + r − 1

r − 1

)
[(k − 1)nE]!

nE! [(k − 1)!]nE
[(k − 1)nE + r]nE (6.36)

where the prefactor in (6.35)

(n − r)!(
n−r
k−1

)
![(k − 1)!]

n−r
k−1

(6.37)

is exactly the number of ways in which n − r vertices can be divided into (n − r)/(k − 1)

groups of k − 1 elements and in (6.36) we have replaced the dependence from the number of
vertices n with that from the number of hyperedges nE .

In the case of simple graphs (k = 2) it follows that

tn,r (e2) =
(

n − 1

r − 1

)
nn−r (6.38)

which at r = 1 provides the well-known result by Cayley about the number u(2)
n of spanning

unrooted trees on the complete graph with n vertices

un(e2) = tn(e2)

n
= nn−2. (6.39)

Also

En(t; e2) =
∑
r�1

(
n − 1

r − 1

)
nn−r t r = t (n + t)n−1 (6.40)

which could be obtained by direct evaluation as

En(t; e2) =
∫

Dn(ψ, ψ̄)[1 − (ψ̄, ψ)] e(t+n)(ψ̄,ψ) = (t + n)n
[
1 − n

n + t

]
. (6.41)

This relation says at t = 1 that the total number of rooted forests is

En(e2) = (n + 1)n−1. (6.42)

In this simple case the whole generating function can also be expressed in terms of the
generalized exponential [1] (the usual exponential is at α = 0)

Eα(z) :=
∑
n�1

(αn + 1)n−1 zn

n!
(6.43)

which satisfies

Eα(z)−α ln Eα(z) = z Eα(z) = E(αz)
1
α (6.44)

where E(z) is a shorthand for E1(z). Indeed

etT (z) =
∑
n�1

En(t; e2)
zn

n!
=
∑
n�1

(n

t
+ 1
)n−1 (tz)n

n!

= E 1
t
(tz) = E(z)t = etzE(z). (6.45)

14
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6.2. The complete hypergraph

We shall consider here the complete hypergraph Kn when all the hyperedge weights wd are
set to one, that is

w = 1 (6.46)

where 1 is the vector with 1 on all components. We have

θ(x, y; 1) := exp[x(ey − 1)] =
∑
s�0

bs(x)
ys

s!
(6.47)

where bs(x) are the Bell polynomials, see appendix A, and therefore

Ps(x; 1) = bs(x) =
∑
l�0

{ s

l

}
xl (6.48)

so that

ps,l(1) =
{ s

l

}
(6.49)

where
{

s

l

}
is a Stirling number of the second kind, and it is the number of ways to partition a

set of cardinality s into l nonempty subsets.
The recursion relation (6.16) becomes here

bs(x) = x
∑
k�1

(
s − 1

k − 1

)
bs−k(x). (6.50)

The number of rooted hyperforests with r hypertrees on the k-uniform complete
hypergraph Kn is therefore

tn,r (1) =
(

n − 1

r − 1

)
bn−r (n) =

(
n − 1

r − 1

) ∑
nE�0

nnE

{
n − r

nE

}
(6.51)

and the total number of rooted hyperforests is

En(1) =
∑
r�1

tn,r (1) =
∑
k�1

(
n − 1

k − 1

)
bn−k(n) = bn(n)

n
(6.52)

because of (6.50) for x = n.

7. Unrooted hyperforests

According to our general formula the generating function for unrooted hyperforests on n
vertices is given by the Grassmann integral

Fn(λ; w): = n![zn] eλU(z)

=
∫

Dn(ψ, ψ̄) exp

⎧⎨
⎩λ

⎡
⎣(ψ̄, ψ) +

∑
k�2

wk(1 − k)
(ψ̄, ψ)k

k!

⎤
⎦
⎫⎬
⎭

× exp

⎡
⎣n
∑
k�2

wk

(ψ̄, ψ)k−1

(k − 1)!
− (ψ̄, Jψ)

∑
k�2

wk

(ψ̄, ψ)k−2

(k − 2)!

⎤
⎦ (7.1)

which we expand in λ

Fn(λ; w) =
∞∑

p=0

un,p(w)λp (7.2)

where un,p(w) is the total weight of unrooted hyperforests with p hypertrees.

15
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We find it convenient to introduce the polynomials �s(λ; w) and the coefficients πs,r (w)

according to

exp

⎡
⎣λ

⎛
⎝y +

∑
k�2

wk(1 − k)
yk

k!

⎞
⎠
⎤
⎦ =

∑
s�0

�s(λ; w)
ys

s!
=
∑
s�0

∑
p�0

πs,p(w)λp ys

s!
. (7.3)

It soon follows that

Fn(λ; w) =
∑
s�1

�s(λ; w)

∫
Dn(ψ, ψ̄)

(ψ̄, ψ)s

s!

× exp

⎡
⎣n
∑
k�2

wk

(ψ̄, ψ)k−1

(k − 1)!
− (ψ̄, Jψ)

∑
k�2

wk

(ψ̄, ψ)k−2

(k − 2)!

⎤
⎦ (7.4)

=
∑
s�1

�s(λ; w)tn,s(w) (7.5)

=
∑
s�1

(
n − 1

s − 1

)
�s(λ; w)Pn−s(n; w). (7.6)

The total weight of unrooted hyperforests on the set of n vertices, irrespective of the number
of hypertrees, is obtained from the partition function at λ = 1

Fn(w) := Fn(1; w) =
∑
s�1

�s(1; w)tn,s(w). (7.7)

Also we get

un,p = un,p(w) =
∑
s�1

πs,p(w)tn,s(w) (7.8)

=
∑
s�1

(
n − 1

s − 1

)
πs,p(w)Pn−s(n; w). (7.9)

Remark that from the definition

πs,p(w) = 0 when p > s (7.10)

so that �s(λ; w) is a polynomial of degree s. It is monic because

πs,s(w) = 1. (7.11)

And remark also that πs,0(w) = 0 while

πs,1(w) =
{

1 for s = 1
ws(1 − s) otherwise.

(7.12)

Accordingly un,0(w) = 0 and un,n(w) = 1, while it follows that the weight of unrooted
hypertrees on n vertices is simply the weight of the rooted hypertrees divided by n; indeed

16



J. Phys. A: Math. Theor. 41 (2008) 205003 A Bedini et al

from (7.8)

un(w) := un,1(w) = Pn−1(n; w) +
∑
s�2

ws(1 − s)

(
n − 1

s − 1

)
Pn−s(n; w) (7.13)

= Pn−1(n; w) − (n − 1)
∑
s�2

ws

(
n − 2

s − 2

)
Pn−s(n; w) (7.14)

= Pn−1(n; w)

n
(7.15)

= tn(w)

n
(7.16)

where we used the recursion relation (6.16) for the polynomials Ps(x; w) at x = n and
s = n − 1.

More formally we can follow a different strategy. Let D = ∂
∂t

then

exp

⎡
⎣λ

⎛
⎝y +

∑
k�2

wk(1 − k)
yk

k!

⎞
⎠
⎤
⎦ = exp

⎡
⎣λ
∑
k�2

wk(1 − k)
Dk

k!

⎤
⎦ exp (ty)

∣∣∣∣∣∣
t=λ

(7.17)

so that

�s(λ, w) = exp

⎡
⎣λ
∑
k�2

wk(1 − k)
Dk

k!

⎤
⎦ t s

∣∣∣∣∣∣
t=λ

(7.18)

and therefore

Fn(λ; w) = exp

⎡
⎣λ
∑
k�2

wk(1 − k)
Dk

k!
+ n
∑
k�2

wk

Dk−1

(k − 1)!

⎤
⎦
⎡
⎣1 −

∑
k�2

wk

Dk−1

(k − 2)!

⎤
⎦

×
∫

Dn(ψ, ψ̄) et (ψ̄,ψ)
∣∣∣
t=λ

= exp

⎡
⎣λ
∑
k�2

wk(1 − k)
Dk

k!
+ n
∑
k�2

wk

Dk−1

(k − 1)!

⎤
⎦

×
⎡
⎣tn − n

∑
k�2

wk

(
n − 1

k − 2

)
tn−k+1

⎤
⎦
∣∣∣∣∣∣
t=λ

(7.19)

now, we expand first the second exponential, to get once more

Fn(λ; w) = exp

⎡
⎣λ
∑
k�2

wk(1 − k)
Dk

k!

⎤
⎦En(t, w)

∣∣∣∣∣∣
t=λ

= exp

⎡
⎣λ
∑
k�2

wk(1 − k)
Dk

k!

⎤
⎦
⎡
⎣∑

s�0

(
n − 1

s − 1

)
Pn−s(n, w)t s

⎤
⎦
∣∣∣∣∣∣
t=λ

=
∑
s�0

(
n − 1

s − 1

)
�s(λ, w)Pn−s(n, w). (7.20)
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7.1. On the k-uniform complete hypergraph

When w = ek the formula (7.3) becomes

exp

[
λ

(
y + (1 − k)

yk

k!

)]
=
∑
s�0

�s(λ; ek)
ys

s!
=
∑
s�0

∑
p�0

πs,p(ek)λ
p ys

s!
. (7.21)

We introduce a family of generalized Hermite polynomials H(k)
s (x) as defined by the generating

function

exp

[
xz + (1 − k)

zk

k!

]
=
∑
s�0

H(k)
s (x)

zs

s!
(7.22)

which when k = 2 are related to the ordinary Hermite polynomials Hs by

H(2)
s (x) = Hes(x) = 1

2
s
2
Hs

(
x

2
1
2

)
. (7.23)

where Hes are sometimes used [22]. Similar generalizations of the Hermite polynomials can
be found in [23–25]. We then get

�s(λ; ek) = λ
s
k H (k)

s

(
λ

k−1
k

)
. (7.24)

Thus the generating function of unrooted hyperforests is

Fn(λ; ek) =
∑
p�0

p:(n−p)|(k−1)

(
n − 1

p − 1

)
(n − p)!(

n−p

k−1

)
![(k − 1)!]

n−p

k−1

n
n−p

k−1 λ
p

k H (k)
p

(
λ

k−1
k

)
(7.25)

where the sum is restricted to the values of p such that n − p can be divided by k − 1. By
using (7.19) we get instead

Fn(λ; ek) = exp

[
λ(1 − k)

Dk

k!
+ n

Dk−1

(k − 1)!

] [
tn − n

(
n − 1

k − 2

)
tn−k+1

]∣∣∣∣
t=λ

= λ
n
k exp

[
(1 − k)

Dk

k!
+

n

λ
k−1
k

Dk−1

(k − 1)!

] [
tn − n

λ
k−1
k

(
n − 1

k − 2

)
tn−k+1

]∣∣∣∣
t=λ

k−1
k

= λ
n
k exp

[
n

λ
k−1
k

Dk−1

(k − 1)!

] [
Hk

n (t) − n

λ
k−1
k

(
n − 1

k − 2

)
Hk

n−k+1(t)

]∣∣∣∣
t=λ

k−1
k

.

In the particular case k = 2 we soon get

Fn(λ; e2) =
√

λ
n
[

Hen

(√
λ +

n√
λ

)
− n√

λ
Hen−1

(√
λ +

n√
λ

)]
(7.26)

because exp
[
α ∂

∂t

]
is the translation operator from t to t + α. The same result can be obtained

by using (7.20) and (6.41) as

Fn(λ; e2) = exp

[
−λ

D2

2

]
En(t, e2)

∣∣∣∣
t=λ

= exp

[
−λ

D2

2

] [
(t + n)n − n(t + n)n−1]∣∣∣∣

t=λ

= exp

[
−D2

2

]√
λ

n

[(
t +

n√
λ

)n

− n√
λ

(
t +

n√
λ

)n−1
]∣∣∣∣∣

t=√
λ

=
√

λ
n
[

Hen

(√
λ +

n√
λ

)
− n√

λ
Hen−1

(√
λ +

n√
λ

)]
.
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This formula has been reported in [26] for λ = 1, where it counts the total number of unrooted
forests. In this case (7.25) becomes instead

Fn(e2) =
∑
p�1

(
n − 1

p − 1

)
nn−p Hep(1) (7.27)

in agreement with what obtained in [26] and reported as the series A001858 in the The On-Line
Encyclopedia of Integer Sequences by Sloane [27].

By using D = ∂
∂x

we get

exp

[
xz + (1 − k)

zk

k!

]
= exp

[
1 − k

k!
Dk

]
exp[xz] (7.28)

and therefore

H(k)
s (x) = exp

[
1 − k

k!
Dk

]
xs (7.29)

=
∑
q�0

1

q!

(
1 − k

k!

)q

Dkqxs (7.30)

=
∑
q�0

1

q!

(
1 − k

k!

)q
s!

(s − kq)!
xs−kq (7.31)

which implies because of (7.24)

�s(λ; ek) =
∑
q�0

1

q!

(
1 − k

k!

)q
s!

(s − kq)!
λs−(k−1)q (7.32)

so that

πs,p(ek) =
∑
q�0

1

q!

(
1 − k

k!

)q
s!

(s − kq)!
δp,s−(k−1)q (7.33)

and therefore, by using (7.8)

un,p(ek) =
∑
q�0

tn,p+q(k−1)(ek)
[p + q(k − 1)]!

(p − q)!

1

q!

(
1 − k

k!

)q

(7.34)

= (n − 1)!

p!

[
n

(k − 1)!

] n−p

k−1
p∑

q=0

(
p

q

)
p + (k − 1)q(

n−p

k−1 − q
)
!

(
1 − k

kn

)q

(7.35)

when n − p can be divided by k − 1, otherwise it vanishes, where we used the relation (6.20)
and the explicit expression (6.35). Once more in the simpler case k = 2 this formula reduces
to

un,p(e2) = 1

p!

p∑
q=0

(
−1

2

)q (
p

q

)(
n − 1

p + q − 1

)
nn−p−q(p + q)! (7.36)

a result which can be found in [11, 28].
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In order to proceed we need the sums

1

p!

p∑
q=0

(
p

q

)
(−z)−q

(v − q)!
= (−z)−p

v!
L(v−p)

p (z) (7.37)

1

p!

p∑
q=0

(
p

q

)
q(−z)−q

(v − q)!
= −z

d

dz

(−z)−p

v!
L(v−p)

p (z) (7.38)

= (−z)−p

v!

[
pL(v−p)

p (z) + zL
(v−p+1)

p−1 (z)
]

(7.39)

= (−z)−p

v!
vL

(v−p)

p−1 (z) (7.40)

where L(α)
m (x) are the associated Laguerre polynomials

L(α)
m (x) :=

∞∑
ν=0

(
m + α

m − ν

)
(−x)ν

ν!
(7.41)

which satisfy the recursion relation

L
(k)
p−1(z) = 1

z

[
pL(k)

p (z) − (p + k)L
(k)
p−1(z)

]
. (7.42)

We arrive at the representation

un,p(ek) = (n − 1)!(
n−p

k−1

)
!

[
n

(k − 1)!

] n−p

k−1
(

−k − 1

kn

)p

×
[
pL

(
n−p

k−1 −p)

p

(
kn

k − 1

)
+ (n − p)L

(
n−p

k−1 −p)

p−1

(
kn

k − 1

)]
(7.43)

for the number of unrooted hyperforests with p hypertrees on the k-uniform complete
hypergraph K(k)

n with n vertices.
In order to study the asymptotic behaviour of the previous expression in the limit of large

n at fixed p we need the following expansion for the Laguerre polynomial,

L
(

n−p

k−1 −p)

s

(
kn

k − 1

)
	 (−n)s

s!

{
1 +

s[s + 1 + 2k(p − s)]

2n(k − 1)
+ O

(
1

n2

)}
(7.44)

that can be easily obtained from the definition (7.41), as shown in appendix C, then

pL
(

n−p

k−1 −p)

p

(
kn

k − 1

)
+ (n − p)L

(
n−p

k−1 −p)

p−1

(
kn

k − 1

)
	 (−n)p

(p − 1)!

1

n

k

k − 1
(7.45)

because the leading terms in the two contributions cancel out. We get

un,p(ek) 	
(

n − 1

p − 1

)
(n − p)!(

n−p

k−1

)
!

n
n−p

k−1 −1

[(k − 1)!]
n−p

k−1

(
k − 1

k

)p−1

. (7.46)

Remark that when p = 1 this formula is exact; indeed

un(ek) = un,1(ek) = (n − 1)!(
n−1
k−1

)
!

n
n−1
k−1 −1

[(k − 1)!]
n−1
k−1

= tn,1(ek)

n
(7.47)

is the number of unrooted hypertrees in n vertices, because of the general result (7.16) and the
explicit expression (6.35). In [19] this number is quoted as obtained in [20].
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The formula (7.46) at k = 2 provides the result

un,p(e2) 	
(

n − 1

p − 1

)
nn−p−1

2p−1
(7.48)

already obtained in [11] by a different method. It follows that the partition function is, if λ is
such that the relevant contribution to the sum comes from regions which do not change with
n, a problem which we will discuss elsewhere, we get

∞∑
p=0

un,p(e2)λ
p ∼ nn−2λ

n−1∑
p=0

(
n − 1

p

)(
λ

2n

)p

= nn−2λ

(
1 +

λ

2n

)n−1

	 nn−2λ e
λ
2

which at λ = 1 provides the well-known result by [9, 10].
More generally, by using the Stirling approximation for large factorials

un,p(ek) 	 nn−2

en k−2
k−1

√
k − 1

[(k − 2)!]
n−p

k−1

1

(p − 1)!

(
k − 1

k

)p−1

(7.49)

while
∞∑

p=0

un,p(ek)λ
p 	 nn−2

en k−2
k−1

√
k − 1

[(k − 2)!]
n

k−1
λ e

k−1
k

[(k−2)!]
1

k−1 λ. (7.50)

7.2. On the complete hypergraph

When w = 1 (7.3) becomes

exp[λ(1 − y)(ey − 1)] =
∑
s�0

�s(λ; 1)
ys

s!
=
∑
s�0

∑
p�0

πs,p(1)λp ys

s!
. (7.51)

Now

πs,p(1) = s![ys][λp] exp[λ(1 − y)(ey − 1)] (7.52)

= s![ys](1 − y)p
(ey − 1)p

p!
(7.53)

= s![ys]
∑
m�0

(−1)m
(

p

m

)
ym
∑
q�0

{
q + p

p

}
yq+p

(q + p)!
(7.54)

=
∑
q�0

(−1)s−p−q

(
p

s − p − q

){
p + q

p

}
s!

(p + q)!
(7.55)

so that the number of unrooted hyperforests with p hypertrees obtained by formula (7.8), by
using the number of rooted hyperforests given in (6.51), is

un,p(1) =
∑
s�1

(
n − 1

s − 1

)
bn−s(n)

∑
q�0

(−1)s−p−q

(
p

s − p − q

){
p + q

p

}
s!

(p + q)!

=
∑
s�1

(
n − 1

s − 1

)∑
r�0

{
n − s

r

}
nr
∑
q�0

(−1)s−p−q

(
p

s − p − q

){
p + q

p

}
s!

(p + q)!
.

(7.56)
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Of course, because of the general result (7.16),

un(1) = un,1(1) = tn,1(1)

n
= bn−1(n)

n
=
∑
r�0

{
n − 1

r

}
nr−1 (7.57)

a sequence which is reported with the number A030019 in the The On-Line Encyclopedia of
Integer Sequences by Sloane [27].

8. Conclusions

We have studied the generating function of both rooted and unrooted hyperforests in the
complete hypergraph with n vertices, when the weight of each hyperedge depends only on its
cardinality. All the results could also be obtained by starting from recursion relations in the
number of vertices, to obtain implicit relations for the formal power series of the generating
function, which can be afterwards solved by using the Lagrange inversion formula. However
we showed here how the same problem can be directly and more easily solved by means of a
novel Grassmann representation.

Once we obtained the general solutions we restricted our work to particular cases to
recover more explicit results. In particular we considered the case of the k-uniform complete
hypergraph, where only edges of cardinality k are present. When this weight is set to one we
are reduced to a counting problem. We thus obtained a generalization of many known results
in the case k = 2 namely of ordinary forests on the complete graph. In the case of unrooted
hyperforests we also recovered a novel explicit expression for their number with p connected
components, that is hypertrees, in terms of the associated Laguerre polynomials, for any k. We
have also presented the asymptotic behaviour of these numbers for a large number of vertices.

A second direct application of the general solutions is obtained for the complete
hypergraph when all the hyperedges have the same weights.
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Appendix A. Stirling and Bell numbers, Bell polynomials

The Stirling numbers of the second kind, denoted by
{

n

k

}
according to the notation introduced

in 1935 by Jovan Karamata and promoted later by Donald Knuth, stand for the number of
ways to partition a set of cardinality n into k nonempty subsets. Thus{n

k

}
= 0 for n < k{n

0

}
= 0 for n � 1{

0

0

}
= 1

if we agree that there is one way to partition an empty set into zero nonempty parts. Chosen
an object among n > 0 to be partitioned into k nonempty parts, we either put it into a class by
itself (in { n−1

k−1 } ways) or put it together with some nonempty subset of the other n − 1 objects

(there are k{ n−1
k

} possibilities, because each of the { n−1
k

} ways to partition the n − 1 other
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objects into k nonempty parts gives k subset that the chosen object can join), hence we get the
recurrence {n

k

}
= k

{
n − 1

k

}
+

{
n − 1

k − 1

}
(A.1)

which enables us to compute them.
Their exponential generating function is∑

n�0

{n

k

} zn

n!
=
∑
n�k

{n

k

} zn

n!
= (ez − 1)k

k!
. (A.2)

The Bell number bn is the number of all possible subsets of a set of cardinality n, hence

bn =
∑
k�0

{n

k

}
. (A.3)

Their exponential generating function is∑
n�0

bn

zn

n!
=
∑
n�0

∑
k�0

{n

k

} zn

n!
=
∑
k�0

∑
n�0

{n

k

} zn

n!
=
∑
k�0

(ez − 1)k

k!
= eez−1. (A.4)

The Bell polynomials, also called exponential polynomials, are given by

bn(x) :=
∑
k�0

{n

k

}
xk (A.5)

so that

bn(1) = bn (A.6)

and they satisfy the recurrence relation

bn+1(x) = x[bn(x) + b′
n(x)] (A.7)

as follows from (A.1).
Their exponential generating function is∑

n�0

bn(x)
zn

n!
=
∑
n�0

∑
k�0

{n

k

}
xk zn

n!
=
∑
k�0

[x (ez − 1)]k

k!
= ex(ez−1) (A.8)

Appendix B. Exponential generating function

Counting the number of unrooted trees un on the complete graph K(2)
n is presented in

[1, chapter 7] as a simple application of the formalism of the exponential generating function.
For n > 0 the recurrence

un =
∑
m>0

1

m!

∑
a1,a2,...,am

a1+···+am=n−1

(
n − 1

a1, . . . , am

)
a1 · · · amua1 · · · uam

(B.1)

can be obtained as follows. A given vertex is attached to m components of sizes a1, . . . , am.
There are

(
n−1

a1,...,am

)
ways to assign n − 1 vertices to those components and a1 · · · am ways

to connect the given vertex to them. There are ua1 · · · uam
ways to connect those individual

components with spanning trees; and we divide by m! because the m components are not
ordered.

As the number of rooted trees is

tn = nun (B.2)
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the recurrence relation can be re-written as
tn

n!
=
∑
m>0

1

m!

∑
a1,a2,...,am

a1+···+am=n−1

ta1

a1!
· · · tam

am!
. (B.3)

By introducing the exponential generating function for the sequence {tn}
T (z) :=

∑
n�0

tn
zn

n!
(B.4)

it follows that the inner sum in (B.3) is the coefficient of zn−1 in T (z)m

tn

n!
= [zn−1]

∑
m�0

1

m!
T (z)m = [zn−1] eT (z) (B.5)

where we have included also the case n = 1 by adding the contribution m = 0. And therefore

T (z) = z eT (z) (B.6)

so that because of (6.43) and (6.44) T is related to the generalized exponential E by

T (z) = zE(z). (B.7)

T is also related to the Lambert W function [29] by

T (z) = −W(−z). (B.8)

Now

un = tn

n
= n!

n
[zn−1]E(z) = nn−2. (B.9)

This result is usually attributed to Cayley in 1889 [30], but in his paper he refers to a previous
result by Borchardt in 1860 [31].

More generally when θ(u) is a formal power series in u with θ(0) = 1, a relation for the
formal power series T (z) of the form

T (z) = zθ(T (z)) (B.10)

has a unique solution, which is given by the Lagrange inversion formula [2]

[zn]T (z) = 1

n
[T n−1] θ(T )n. (B.11)

Furthermore

[zn]T (z)r = r

n
[T n−r ] θ(T )n. (B.12)

In our application to the trees, θ(T ) = eT and therefore

un = tn

n
= n!

n
[zn]T (z) = (n − 1)!

n
[T n−1] enT = nn−1

n
. (B.13)

While the number of rooted forests with r trees is given by

tn,r = n!

r!
[zn]T (z)r = (n − 1)!

(r − 1)!
[T n−r ] enT =

(
n − 1

r − 1

)
nn−r . (B.14)

More generally, in the case of the k-uniform complete hypergraph K(k)
n with weights wk

the recurrence relation for the weight of unrooted hypertrees is

un =
∑
m>0

m/(k−1)

w
m

k−1
k(

m
k−1

)
! [(k − 1)!]

m
k−1

∑
a1,a2,...,am

a1+···+am=n−1

(
n − 1

a1, . . . , am

)
a1 · · · amua1 · · · uam

(B.15)
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where at variance with respect to (B.1) the sum on m is restricted to integers that can be divided
by k −1 and appears a combinatorial factor m!

( m
k−1 )![(k−1)!]

m
k−1

because this is the number of ways

in which the m sub-hypertrees can be hooked to the starting vertex by using hyperedges of
cardinality k. As a consequence the equation for the rooted hypertrees becomes

tn

n!
= [zn−1]

∑
l�1

wl
k

[(k − 1)!]l l!
T (z)(k−1)l = [zn−1] ewk

T (z)k−1

(k−1)! (B.16)

which is to say

T (z) = z ewk
T (z)k−1

(k−1)! . (B.17)

We can now apply the Lagrange inversion formula with θ(T ) = ewk
T (z)k−1

(k−1)! and therefore

un = tn

n
= n!

n
[zn]T (z) = (n − 1)!

n
[T n−1] enwk

T (z)k−1

(k−1)! = 1

n

(nwk)
n−1
k−1(

n−1
k−1

)
! [(k − 1)!]

n−1
k−1

. (B.18)

While the weight for the rooted hyperforests with r hypertrees is

tn,r = n!

r!
[zn]T (z)r = (n − 1)!

(r − 1)!
[T n−r ] en T k−1

(k−1)! = (n − 1)!

(r − 1)!

1(
n−r
k−1

)
!

(nwk)
n−r
k−1

[(k − 1)!]
n−r
k−1

(B.19)

when (n − r)/(k − 1) is an integer. It is indeed the total number of hyperedges.
In the general case of the complete hypergraph Kn the recurrence relation for the total

weight of unrooted hypertrees is more involved, but the possibilities of attaching hyperedges
of different cardinality at the starting vertex are mutually avoiding and this makes the recursion
affordable. It follows that the generating function satisfies the equation

T (z) = z e
∑

k�2 wk
T (z)k−1

(k−1)! (B.20)

so that

tn,r = (n − 1)!

(r − 1)!
[T n−r ] en

∑
k�2 wk

T k−1

(k−1)! =
(

n − 1

r − 1

)
Pn−r (w) (B.21)

where we introduced the polynomials Pn−r (w) of the weights wk’s defined in (6.7).
In the simpler case in which all the weights are equal to, say, x, the recurrence relation for

the unrooted hypertrees is

un =
∑
m�0

∑
l�0

1

m!

{m

l

}
xl

∑
a1,a2,...,am

a1+···+am=n−1

(
n − 1

a1, . . . , am

)
a1 · · · amua1 · · · uam

(B.22)

where, at variance with respect to (B.1) there appears a factor
{

m

l

}
because this is the number

of ways in which the m sub-hypertrees can be hooked to the starting vertex by using l generic
hyperedges. As a consequence the equation for the rooted hypertrees becomes

tn

n!
= [zn−1]

∑
m�0

∑
l�0

1

m!

{m

l

}
xlT (z)m = [zn−1] ex(eT (z)−1) (B.23)

which is to say

T (z) = z ex(eT (z)−1) (B.24)

that is (B.20) for wk = x for all k, a relation that in the case x = 1 is reported in the Warme’s
PhD Thesis [21] as due to W D Smith, but see also [17]. We can now apply the Lagrange
inversion formula with θ(T ) = ex(eT −1) and therefore

un = tn

n
= n!

n
[zn]T (z) = (n − 1)!

n
[T n−1] enx(eT −1) = bn−1(nx)

n
. (B.25)
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While the total weight of rooted hyperforests with r hypertrees is

tn,r = n!

r!
[zn]T (z)r = (n − 1)!

(r − 1)!
[T n−r ] enx(eT −1) =

(
n − 1

r − 1

)
bn−r (nx). (B.26)

Appendix C. Asymptotic behaviour of associated Laguerre polynomials

In this appendix we will study the asymptotic behaviour of the associated Laguerre polynomial

L
(

n−p

d−1 −p)

s

(
dn

d−1

)
for large n.

We remark that for α, ν, s all integers and α � 1

(s + α)!

(ν + α)!
= (s + α) · · · (ν + 1 + α)

	 αs−ν + αs−ν−1 [s + · · · + (ν + 1)]

= αs−ν + αs−ν−1

[
s(s + 1)

2
− ν(ν + 1)

2

]
if

α = n − p

d − 1
− p

we get, for n � 1 at first order in 1/n

αs−ν 	
(

n

d − 1

)s−ν [
1 − (s − ν)

pd

n

]
and

(s + α)!

(ν + α)!
	
(

n

d − 1

)s−ν {
1 − (s − ν)

pd

n
+

d − 1

n

[
s(s + 1)

2
− ν(ν + 1)

2

]}
so that

L(α)
s

(
dn

d − 1

)
=

s∑
ν=0

(s + α)!

(ν + α)!

1

ν!(s − ν)!

(
− dn

d − 1

)ν

	
(

n

d − 1

)s 1

s!

s∑
ν=0

(
s

ν

)
(−d)ν

×
{

1 + − (s − ν)
pd

n
+

d − 1

n

[
s(s + 1)

2
− ν(ν + 1)

2

]}
.

Now
s∑

ν=0

(
s

ν

)
(−d)ν = (1 − d)s

and by taking one and two derivatives with respect to −d we get
s∑

ν=0

ν

(
s

ν

)
(−d)ν−1 = s(1 − d)s−1

s∑
ν=0

ν(ν − 1)

(
s

ν

)
(−d)ν−2 = s(s − 1)(1 − d)s−2
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and therefore
s∑

ν=0

ν(ν + 1)

(
s

ν

)
(−d)ν = s(s − 1)(1 − d)s−2d2 − 2s(1 − d)s−1d

= s(s + 1)(1 − d)s−2d2 − 2s(1 − d)s−2d

and we get

L(α)
s

(
dn

d − 1

)
	
(

n

d − 1

)s 1

s!

{
(1 − d)s − [s(1 − d)s + s(1 − d)s−1d]

pd

n

+
d − 1

n

[
s(s + 1)

2
(1 − d)s − s(s + 1)

2
(1 − d)s−2d2 + s(1 − d)s−2d

]}

= (−n)s

s!

{
1 +

s(p + 1)d

(d − 1)n
+

s(s + 1)(1 − 2d)

2(d − 1)n

}
from which (7.44) follows.
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